Linear poly(methyl glycerol and linear polyglycerol as potent protein and cell resistant alternatives to poly(ethylene glycol).
M. Weinhart, I. Grunwald, M. Wyszogrodska, L. Gaetjen, A. Hartwig, R. Haag – 2010
The nonspecific interaction of proteins with surfaces in contact with biofluids leads to adverse problems and is prevented by a biocompatible surface coating. The current benchmark material among such coatings is poly(ethylene glycol) (PEG). Herein, we report on the synthesis of linear polyglycerol derivatives as promising alternatives to PEG. Therefore, gold surfaces as a model system are functionalized with a self-assembled monolayer (SAM) by a two-step anhydride coupling and a direct thiol immobilization of linear poly(methyl glycerol) and polyglycerol. Surface plasmon resonance (SPR) spectroscopy reveals both types of functionalized surfaces to be as resistant as PEG towards the adsorption of the test proteins fibrinogen, pepsin, albumin, and lysozyme. Moreover, linear polyglycerols adsorb even less proteins from human plasma than a PEG-modified surface. Additional cell adhesion experiments on linear poly(methyl glycerol) and polyglycerol-modified surfaces show comparable cell resistance as for a PEG-modified surface. Also, in the case of long-term stability, high cell resistance is observed for all samples in medium. Additional in vitro cell-toxicity tests add to the argument that linear poly(methyl glycerol) and polyglycerol are strong candidates for promising alternatives to PEG, which can easily be modified for biocompatible functionalization of other surfaces.